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SYNOPSIS 

A novel approach is proposed to adjust flow nonuniformities caused by production variations 
from an extrusion die. A mathematical model that is based on the lubrication approximation 
was developed, and the effect of four types of production variations was examined separately. 
To each production variation, a specially designed choker bar was constructed and inserted 
into the extrusion die to correct flow nonuniformities. 0 1994 John Wiley & Sons, Inc. 

INTRODUCTION 

Extrusion dies are employed to deliver thin liquid 
layers for the production of wide polymer and metal 
films or sheets and also appear in many coating op- 
erations. Two types of extrusion dies, T-dies and 
coat-hanger dies, are frequently used. A T-die is easy 
to construct, but a coat-hanger die has more advan- 
tages in terms of acceptable flow uniformity and 
narrow residence time distributions. Many authors 
have proposed mathematical analyses to predict the 
fluid motion inside extrusion dies. The analyses can 
be categorized into two types. The first type is called 
the lubrication approximation, which is based on 
the one-dimensional or two-dimensional macro- 
scopic mass and momentum balances.'-21 The second 
type is based on the three-dimensional finite element 
simulation to determine the velocity and pressure 
fields inside an extrusion die.22-25 

Most of the previous studies were concerned with 
the design of an extrusion die that delivers a wide 
and thin sheet with acceptable lateral uniformity 
for a particular polymeric liquid. However, because 
of high precision requirements, extrusion dies are 
very expensive to construct; and it is not economical 
to build a die that is only suitable for a particular 
polymeric liquid. In practice, an extrusion die should 
be flexible to meet many production variations. Liu 
et al.7 found that a linearly tapered coat-hanger die 
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is very sensitive to different production variations, 
but they did not propose any remedies to correct 
flow nonuniformities caused by production varia- 
tions. 

In this article we discuss a novel and simple ap- 
proach to correct flow nonuniformities for each pro- 
duction variation. Instead of rebuilding dies to meet 
production variations, we constructed a specially 
designed choker bar for each production variation; 
the flow nonuniformities can be properly adjusted 
by inserting this choker bar into the extrusion die. 
Traditionally a choker bar has a rectangular cross 
section and is used manually through a trial and 
error manner to correct flow nonuniformities for an 
extrusion die. In this article we present design for- 
mulas that can be used to construct tapered choker 
bars so that trial and error approaches can be elim- 
inated and to produce an extrusion die that has more 
flexibility to handle different production require- 
ments. 

We shall consider the following production vari- 
ations: 

1. The optimal manifold shape based on the lu- 
brication approximation to deliver uniform 
liquid sheets is tapered and the cross-sec- 
tional area of the manifold at  the ends of the 
die is very smalL7 The ideal manifold is not 
only difficult to construct, but may also create 
many practical production problems such as 
cleaning and flushing. Therefore the manifold 
has to be enlarged and the deterioration of 
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flow uniformity because of the enlargement 
should be properly compensated. 

2. An extrusion die should be suitable for a wide 
range of flow rates. As flow rates increase, 
the inertial effect can be significant, partic- 
ularly for metal extrusion and some coating 
operations, and should be taken into consid- 
eration. 

3. An extrusion die should be flexible for poly- 
meric liquids with different rheological be- 
havior because when the product formula- 
tions are updated, the rheologies of the as- 
sociated polymeric liquids are also varied. 

4. An extrusion die should deliver uniform liquid 
films or sheets with different widths to meet 
production specifications. 

A mathematical model that is based on the lu- 
brication approximation was developed to analyze 
the effect of these four types of variations, and 
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Figure 1 
adjustable choker bar. ( a )  Die I; (b)  Die 11. 

A linearly tapered coat-hanger die with an 

A 

(b) 
Figure 2 
in Die I; (b)  used in Die 11. 

Two different shapes of choker bar: ( a )  used 

choker bars with specially tapered shapes were con- 
structed to correct flow nonuniformities due to these 
variations. 

EXPERIMENTAL 

Mathematical Formulation 

The extrusion die we consider is a center-fed linearly 
tapered coat-hanger die as shown in Figure 1. Be- 
cause of symmetry, we shall only examine the right 
half of the die. A liquid enters the interior of the die 
through the inlet tube; after filling the manifold, the 
liquid moves forward through the slot section and 
forms a wide and thin liquid layer. A choker bar may 
be positioned in the middle of the slot section to 
adjust flow uniformity by controlling the slot gap. 
Traditionally, the choker bar has a regular rectan- 
gular cross section and is adjusted manually through 
a trial and error procedure to correct flow nonuni- 
formities. Here we used a choker bar with a specially 
designed geometry to minimize the effect of four 
production variations mentioned earlier. The choker 
bar we propose may have two different geometries 
(Fig. 2 )  ; the first type in Figure 2 ( a )  or Die I, is a 
two-step choker bar, the shape function l ( y )  will be 
derived later. Note that the positions of point A in 
Figures 1 and 2 are different because we turned the 
choker bar upside down to better illustrate the shape 
function Z(y). The second type, or Die I1 in Figure 
2 (b)  , has a tapered section, and the tapered function 
w ( y  ) will also be derived later. The major objective 
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of this paper is to select Z(y) and w(y) properly to 
eliminate flow nonuniformities caused by production 
variations. 

We shall consider the isothermal and laminar 
fluid motion inside the die; the entrance and the end 
effects are neglected. The liquid under consideration 
is assumed to obey the power-law model and the 
viscosity can be represented as26: 

If n = 1, the fluid is Newtonian; if n < 1, the fluid 
will exhibit the shear-thinning behavior quite com- 
mon for most polymeric liquids. 

We apply the lubrication approach to determine 
the flow distribution inside the die. Lee and Liu" 
derived the pressure drop/flow rate equation in the 
manifold as follows: 

where the first two terms in the right-hand side of 
eq. ( 2 )  represent the inertial effect, and the third 
terms represent the effect of viscous force. p is a 
kinematic factor and X is a shape factor, both depend 
on the shape of the manifold and the power-law in- 
dex n. Numerical values of p and X for various man- 
ifold shapes can be found elsewhere." The gravi- 
tational effect is neglected here. The volumetric flow 
rate per unit die width in the slot section can be 
represented as follows 7: 

( 3 )  

( 4 )  

where w represents wl, W 2 ,  or w3 in Figure 1. The 
slot gap may be variable in the whole slot section as 
indicated in Figure 1; the pressure drop in the slot 
section can be estimated by evaluating the pressure 
drop in each part with the same slot gap through 
the lubrication approximation and then adding the 
total pressure drop together. This procedure was 
adopted from two previous s t ~ d i e s . ~ , ~ ~  For Die I, the 
pressure drop in the slot section is 

dP - P 
dZ Fl ( 5 )  

where 

and we take the reference pressure to be zero. 

is 
For Die 11, the pressure drop in the slot section 

where 

and 

g = tan 8, f2  = (2)'"". f 3  = ($yl. ( 9 )  

Because the decrease of the volumetric flow rate 
in the manifold is equal to the amount that leaks 
into the slot section, we have the following material 
balance 

dQ - dY = -4 

We now define the dimensionless variables as fol- 
lows: 

Here the subscript 0 denotes values a t  the center 
line y = 0. Differentiating eq. (10) with respect to 
y and substituting eqs. (5) or ( 6 )  into the resulting 
equations, we obtain equations that govern the vol- 
umetric flow rates in the manifolds in Die I and Die 
11. For Die I, we obtain 

- + 
nF3h4 nF3h4 

= 0. - 
nF3h3"+l 
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For Die 11, we obtain 

( 1 + : 2 ) $  ReNmQ 
d2Q . + 
dy2 + nF4 nF4h4 

ReNnQ2( dy dQ ) NvQn( $r-n 
. ,  . ,  

- = 0. (13)  - 
nF4h4 nF4h3n+1 

Note here that the Reynolds number Re is defined 
as 

and 

2n+l 
1 L" Nv = 

E"X"h$'+'sin 0 

The dimensionless boundary conditions for the flow 
equations are 

y = O ,  Q = O  

y = l ,  Q = 1 .  (16)  

The flow equations can be discretized by standard 
finite-difference schemes and then solved iteratively 
by the Newton-Raphson method. The detailed nu- 
merical procedure is similar to the work of Liu et 
al.7 and will not be reported here. Once Q is deter- 
mined, q can be computed using eq. (10) .  Note q 
represents the lateral flow uniformity. For a uniform 
liquid layer, q is equal to unity and then Q = y .  

If the choker bars in Die I and Die I1 are removed, 
the slot sections in both dies will have a constant 
gap w ,  then eqs. ( 1 2 )  and (13)  reduce to the flow 
equation developed by Liu et al.7 For a given liquid, 
if we fix all the geometric variables except h and 
substitute the uniform flow condition Q = y into eq. 
( 13) ,  we obtain 

h = Yn/3n+1,  

(17)  ( csc 0 ) [ 1 / ( 3 n + l )  1 

which implies if the manifold is tapered following 
eq. (17 ) ,  the die will deliver a uniform liquid film 
or sheet. 

We now discuss how to design choker bars prop- 
erly so that the flow nonuniformities caused by the 
four production variations can be corrected. 

Manifold Enlargement 

It can be observed from eq. (17)  that h becomes 
very small at the ends of the die; this creates a 
maintenance problem if the interior of the die has 
to be cleaned. Therefore in practice the manifold 
has to be enlarged at the ends of the die. A simple 
way to enlarge the manifold is to select h as follows: 

Here yo is an adjustable constant. Therefore as y 
approaches 0, h is not small and the maintenance 
problem can be solved. If the manifold is constructed 
based on eq. (18) ,  the flow uniformity no longer 
exists. To regain this uniformity, we need to taper 
the choker bar properly. We fix all the geometric 
parameters of Die I except l3 and assign Q = y, which 
implies the flow distribution will be uniform. By 
substituting eq. ( 18) into the flow equation (12)  for 
Die I, we obtain 

130 d13 Y 2  
g L  dY (y + y0)4n/3n+1 ( f 2  - 1 )  -- = ReNn 

Y + ($-r - ReNm 4n/3n+l  - ( 19) (Y + Yo) 

with boundary condition y = 0 and l3 = 1. Equation 
( 19) can be numerically integrated to generate the 
taper function 13(y) .  Once a choker bar is con- 
structed following the design equation l3 ( y )  , this 
bar can be inserted into the die to correct the flow 
nonuniformities caused by manifold enlargement. 
Similarly, we substitute eq. (18)  into eq. (13)  and 
obtain 

= wP+.[ 1 - ( L)n + ReNm Y 
Y +YO ( y  + y 0 ) 4 n / 3 n + l  

J 
- ReNn 4n/3n+l]  ( 2 0 )  (Y  + Yo) 

with boundary condition y = 0 and w2 = 1. Therefore 
once w2 ( y  ) is obtained, a choker bar can be built to 
eliminate flow nonuniformities. 
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The enlarged manifold should be used in consid- 
ering the following production variations. 

lnertial Effect 

The viscosity of polymeric liquids is usually very 
high, so the inertial force can be neglected. However, 
for metal extrusion and coating operations, the fluid 
viscosity can be low and the inertial force cannot be 
neglected. Leonard' and Lee and Liu" used the one- 
dimensional lubrication approach to analyze the ef- 
fect of inertial force and their results showed that 
the inertial force will deteriorate the flow uniformity. 
To regain perfect flow distribution in Die I, we need 
to substitute eq. ( 1 8 )  into eq. (12 )  and select Q 
= y .  The taper function 13(y)  is the same as eq. 
( 1 9 ) .  Once a choker bar is constructed with the taper 
function 13(y)  for a given Re, the nonuniformities 
caused by the inertial force can be eliminated. Sim- 
ilarly, the taper function w 2 ( y )  is the same as (20)  
and the choker bar can be built accordingly. 

Correction for Solutions With Different 
Rheological Properties 

An extrusion die is usually designed for a particular 
polymeric liquid. Liu et al.7 found that the flow uni- 
formity is quite sensitive to the rheological prop- 
erties of the delivered polymeric liquid. If the rheo- 
logical properties vary, the flow uniformity will de- 
teriorate rapidly. Because the die is very expensive, 
it is desirable to use a die for solutions with different 
rheological properties. If a die is designed based on 
a polymeric liquid with the power-law index m, then 
the manifold taper function h is 

Now the die is used to deliver a solution with a dif- 
ferent power-law index n and the flow uniformity 
has to be restored. To regain flow uniformity in Die 
I, we need to substitute eq. ( 2 1 )  into eq. ( 1 2 )  while 
Q = y ,  then we obtain 

Y + y n D  - ReNm 4m/3m+l - (") (Y  + Y o ) d  (Y + Yo) 

with boundary condition y = 0 and l3 = 1 where 

3n  + 1 
6 = m -  

3 m + 1 '  

The taper function l3 ( y  ) can be obtained by nu- 
merically integrating eq. (22) .  A choker bar with 
the taper function l3 ( y )  can be built to correct flow 
nonuniformities because of viscosity variations. 
Similarly, substituting eq. ( 2 1 )  into eq. ( 13)  with Q 
= y ,  we obtain for Die 11 

Y 
( y  + yo) 4m'3m+l 

y n D  , + R e N m  
(Y + Yo) 

with boundary condition y = 0 and w 2  = 1 and the 
taper function w 2 ( y )  for the adjustable choker bar 
can be found through a numerical integration. 

Product Width Variations 

We usually design a die that delivers the widest liq- 
uid layers as production needs. If it is necessary to 
produce films or sheets narrower than the designed 
die usually delivers, we can block the two ends of 
the die; however, the flow uniformity will be de- 
stroyed by doing so. 

The flow equations ( 1 2 )  and ( 1 3 )  that describe 
the volumetric flow distributions in the manifold 
remain the same if the two ends of the die are 
blocked. However, the corresponding boundary 
conditions are different and are as follows: 

y = c ,  Q = O  

Here E is the dimensionless reduction of the pro- 
duction width. To regain perfect flow distribution, 
the volumetric flow rate Q should have the following 
form: 

Q = -  Y - E  
1-C 
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Substituting eqs. (18) and (26) into eq. (13), we 
obtain for Die I 

130 d13 
( f 2  - 1) -- = ReNn 

gL dY ( y  + y0)4m/3m+1 
( y  - € ) 2 (  1/1 - € ) 2 - n  

( y  - € ) (  1/1 - t ) 2 - n  

( y  + y 0 ) 4 n / 3 n + 1  
-1  + (E)" - ReNm 

(27) 

with boundary condition y = 6 and l3 = 1. Therefore 
if we numerically integrate eq. (27) to generate the 
taper function l3 ( y  ) and then construct a choker bar 
using this 13(y)  as the taper function, the flow dis- 
tribution can be uniform again even if the two ends 
of the die are blocked. 

Similarly, after substituting eqs. ( 18) and (26) 
into eq. (13), we obtain for Die I1 

( y  - t ) ( l  - t)2-" 

( y  + y 0 ) 4 n / 3 n + 1  
- -  ( + ReNm 

] (28) 
( y  - € ) 2 (  1 /1  - € ) 2 - n  

( y  + y0)4n/3n+1 
- ReNn 

with boundary condition y = c and w2 = 1. Once 
w 2 ( y )  is obtained, a choker bar that corrects flow 
nonuniformities can be constructed. 

Example Calculations 

We now illustrate the variations of the choker bar 
taper function 13(y)  and w 2 ( y )  by some sample cal- 
culations. The following geometric parameters of a 
linearly tapered coat-hanger die are selected for 
demonstration: 

1. L = 75 cm; 
2. w1 = 0.15 cm; 
3. w2 = 0.075 cm; 
4. 130 = 0.5 cm or 1.0 cm; 
5. 8 = 5"; 
6. [ ( 1.5834 + 5.9005)]', for a 

n 
X = 3.8214l'" - 

60' teardrop-shaped manifold7; and 

law index n = 0.5. 
7. = 1.8283 cm, for a fluid with the power- 

Values of the kinematic factor p were reported by 
Lee and Liu." The coat-hanger die with the above 

geometric parameters can theoretically deliver a liq- 
uid film with perfect flow uniformity. The first-order 
differential equations that describe the variations of 
13(y)  and w 2 ( y )  can be solved by the fourth-order 
Runge-Kutta method.28 

How to select a proper choker bar so that the 
effects of the four production variations on flow 
nonuniformities can be removed follows. 

Enlarged Manifold 

Liu et al.7 found that an enlarged manifold can de- 
teriorate the lateral flow uniformity, and higher flow 
rates would appear at the ends of the die. The inertial 
effect was neglected here and then Re = 0. yo was 
selected to be 0.05 and 130 = 0.5 cm. The effect of 
the power-law index n on the taper function 13(y)  
is displayed in Figure 3. Note here y = 0 refers to 
the die end and y = 1 is the die center. l3 ( y ) is mono- 
tonically decreasing from the die end to the center 
of the die. As n becomes smaller, or the shear-thin- 
ning behavior of the fluid is more significant, 13(y)  
decreases more rapidly. However as n = 0.25, 13(y)  
will move up and is close to the curve of n = 0.75. 
It can be observed from Figure 2 that increasing 
13(y)  will remove the resistance for fluid to pass 
through the slot section. The competing effects of 
n and the geometrical resistance in the slot section 
will cause 13(y)  to move up as n is small. 

The effect of n on the taper function w 2 ( y )  is 
displayed in Figure 4. As n becomes smaller, w 2 ( y )  
will increase monotonically from the die end to the 
die center. However, as n is smaller than 0.5, the 
variation of w 2 ( y )  is not obvious as n drops further. 
The effects of yo on 13(y)  and w 2 ( y )  are shown in 

1.1 
o n = l  an.0.75 011.0.5 0 n=a25 

Y 

Figure 3 The effect of n on l3 with 13,, = 0.5 cm, yo 
= 0.05, Re = 0, and w, = 2Wz. ( 0 )  n = 1; (A) n = 0.75; 
(0 )  n = 0.5; (0) n = 0.25. 
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I 
0.8 1.0 

Y 

Figure 4 The effect of n on w2 with & = 1 cm, yo = 0.05, 
Re = 0, and w1 = 2wzO. (0) n = 1; ( A )  n = 0.75; (0) n 
= 0.5; ( 0) n = 0.25. 

Figure 5. If yo is increased, the variation of l3 ( y )  and 
w2 (y) will be more significant. 

lnertial Wect  

Lee and Liu lo found that if the fluid inertia becomes 
significant in a coat-hanger die, the flow rates will 
increase at two ends of the die and deteriorate flow 
uniformity. The flow nonuniformities caused by in- 
creasing fluid inertia can be corrected by an adjust- 
able choker bar. The variation of l3 (y ) as a function 
of Re is displayed in Figure 6 (note here yo = 0.05, 
/30 = 1 cm and n = 0.5). As Re goes up, 13(y) will 
decrease monotonically from the die end to the die 
center. However, as Re is equal to 5, the variation 
of 13(y) is quite significant and 13(y) in the center 
is only 0.2. The one-dimensional lubrication ap- 
proach may not be valid if Re is too high; therefore 

0.1 1 1 1 I 1 I 
0.0 0.2 0.4 0.6 0.8 1.0 

Y 

Figure 6 The effect of Re on l3 with 130 = 1 cm, yo 
= 0.05, n = 0.5, and w 1  = 2W2. (0) Re = 0; ( A )  Re = 1; 
(0 )  Re = 5. 

the present design to correct the flow nonuniform- 
ities caused by fluid inertia is limited to cases with 
very low Reynolds numbers. The effect of Re on 
w 2 ( y )  is displayed in Figure 7. We observe similarly 
that as Re is greater than 5, the correct approach 
may no longer be valid. 

Variation of Rheological Properties 

Liu et al.7 found that the flow uniformity is very 
sensitive to the variation of the power-law index n 
in a linearly tapered coat-hanger die. If a die was 
originally designed based on n = 0.5 and suddenly 
n was changed to 0.6, a “W” type flow distribution 
would appear. On the other hand if n dropped to 
0.4, an “M” type flow pattern would appear instead. 

1.10 

1.03 
1.02 
1.01 
1.00 . _. 

0.99 
8!0 0.l 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 13 
0. I I I I I I I I I I J 

Y 

Figure 5 The effect of yo on l3 and w2 with yo = 0.05, n 
= 0.5. For 13: 130 = 0.5 cm, w1 = 2W2; for w2: & = 1 cm, w1 
= 2 ~ 2 0 .  (0) yo = 0.05; (A) yo = 0.025; (0 )  yo = 0.05; (0) 
yo = 0.025. 

- 
x 
Y 

r” 

o Re=O a R e - 1  oRe.5 

I 
1.0 

Y 

Figure 7 The effect of Re on w2 with & = 1 cm, yo 
= 0.05, n = 0.5, and w1 = 2wz0. (0 )  Re = 0; (A) Re = 1; 
(0) Re = 5. 
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Figure 8 The effect of fluid viscosities on 4 with yo 
= 0.05, m = 0.5, Re = 0, and w1 = 2Wz. (0) 130 = 0.5 cm, 
n = 0.6; (A) 130 = 0.5 cm, n = 0.4; (El) ls0 = 1 cm, n = 0.6; 
(0) 130 = 1 cm, n = 0.4. 

The design equations (22) and (24) can be applied 
to offset the flow uniformities caused by the varia- 
tion of n. We fixed n = 0.5 and made proper selec- 
tions of and h. Then n was varied to n = 0.6 and 
0.4. l3 (y) was computed based on eq. (22) and then 
a choker bar with the taper function 13(y)  could be 
constructed to correct flow nonuniformities. The ef- 
fect of n on l3 ( y  ) is displayed in Figure 8. For the 
case of n = 0.6 > 0.5, l3 ( y  ) has to decrease from the 
die end to the die center to eliminate the flow non- 
uniformities. If n = 0.4 < 0.5, then l3 ( y )  will increase 
from the die end to the die center instead. If 130 is 
longer, the variation of Z3(y) will be smaller. The 
effect of n on w2 ( y ) is displayed in Figure 9, and the 
trend is similar to the case of varying 1 3 ( y ) .  

l.20c o n.0.6 A n = 0.4 

0.8Fb.0 0.2 0.4 0.6 0.8 1.0 
Y 

Figure 9 The effect of fluid viscosities on w2 with yo 
= 0.05, m = 0.5, Re = 0, & = 1 cm, and w1 = 2wz0. (0) 
n = 1; (A) n = 0.75. 

0 n=l A n.0.75 D n=a5 o n=Q25 

I,,,,,I,,,, 
o*$.O 0.1 Q2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1 

Y 

Figure 10 The effect of n on l3 with yo = 0.05, t = 0.05, 
130 = 0.5 cm, Re = 0, and w1 = 2Wz. (0) n = 1; (A) n 
= 0.75; (0 )  n = 0.5; (0) n = 0.25. 

Production Width Adjustment 

If the product has to be narrowed as required, usually 
the two ends of the die have to be blocked to reduce 
production width. However, Liu et al.7 found by 
doing so, the flow uniformity will deteriorate and 
higher flow rates will appear a t  the two ends of the 
die. To correct the flow nonuniformities caused by 
narrowing the production width, 13(y) and w2(y) 
can be selected by solving eqs. (27) and (28), re- 
spectively. We selected Re = 0, yo = 0.05, 130 = 0.5 
cm, and the dimensionless reduction of the produc- 
tion width was e = 0.05. The effect of n on 13(y) is 
shown in Figure 10; generally 13(y) is a monotoni- 
cally decreasing function, as n becomes smaller, l3 ( y )  
will decrease faster. However, as n = 0.25, 13(y) will 
move up instead. This is similar to the case of en- 

o n = l  A n.0.75 0 n.0.5 o n.0.25 

.3 1.05 
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Figure 12 The effect of t on l3 and wp for yo = 0.05, n 
= 0.5.  For 13: 130 = 0.5 cm, w1 = 2G2; for wp: &, = 1 cm, w1 
= 2~20 .  (0) t = 0.05; ( A )  t = 0.025; (0) t = 0.05; (0) e 
= 0.025. 

larging the manifold. The effect of n on w 2 ( y )  is 
displayed in Figure 11, w 2 ( y )  is monotonically in- 
creased from the die end to the die center. But as n 
is smaller than 0.5, the variation of w 2 ( y )  is not 
obvious. This is also similar to the case of enlarging 
the manifold. If t is reduced, the variation of 13(y)  
and w2 ( y  ) will be decreased accordingly (Fig. 12). 

CONCLUSIONS 

We described a novel design approach to correct flow 
nonuniformities caused by four types of production 
variations in a linearly tapered coat-hanger die. This 
theoretical approach is based on the one-dimen- 
sional lubrication approximation and can be used 
to predict the taper functions of an adjustable choker 
bar. Once a choker bar is constructed based on the 
prediction of the mathematical model, the flow non- 
uniformities can be properly eliminated by inserting 
this bar into the die. A choker bar can be tapered 
in two different ways (Fig. 2 ) .  The first method may 
be easier to machine than the second one. The four 
production variations we considered include 

1. enlarging the manifold; 
2. including the fluid inertial terms; 
3. varying the viscosity of the polymeric liquids; 

4. narrowing the liquid film width to meet pro- 
and 

duction requirements. 

All four production variations can be properly han- 
dled, but if the fluid inertia becomes dominant, or 
Reynolds number is not small, the present method 
may not be applicable. 
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NOMENCLATURE 

A 
D 
E 
Fl 
F2 
F 3 r  F4 

f 2 ,  f 3  

g 
h,  h 

L 

k 
12 9 h ,  14 

m, n 
Nm, Nn, Nv 

P 
Q 9  Q 

80 
s, Q 
Re 

Greek letters 

B 

cross-sectional area of the manifold 
constant in eq. (23) 
constant in eq. (4) 
variable defined in eq. ( 6 )  
variable defined in eq. (8) 
variable defined in eq. (15) 
constants in eq. (9)  
tan 0 
square root of A ,  dimensional and 

die width 
length of land, shown in Figure 1 
material constant of the power-law 

power-law index 
dimensionless parameters defined in 

pressure 
flow rate, dimensional and dimen- 

inlet flow rate 
flow rate per unit die width, dimen- 

Reynolds number, Re = [ p ( Q o /  

velocity component in the x direction 
slot gaps, shown in Figure 1 
coordinate system, dimensional and 

dimensionless 

model 

eq. (15) 

sionless 

sional and dimensionless 

Lwl ) 2-nw 71 / k 

dimensionless 

constant in eq. (18) 

dimensionless inertial shape factor 

shear rate 
constant in eq. (23)  
dimensionless reduction of the die width 
viscosity 
die angle 
dimensionless flow rate 
density 
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